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ABSTRACT 

A method for the numerical solution of linear second-order differential equations is 
described. The method is an extension of the Numerov method, and has a truncation 
error of the same order, ha. It reduces to the Numerov method if the term involving the 
first derivative is absent. The results obtained by applying the method to a particular 
example are given, and compared with results obtained with the fourth-order Runge- 
Kutta method. 

1. INTRODUCTION 

A popular method for the numerical solution of the Schrodinger equation 

u”(x) = f(x) u(x) (1) 

is the well-known Numerov method, which has been thoroughly discussed by 
Blatt [l]. Our concern in this paper is the more general equation 

d(x) = u(x) u’(x) + b(x) u(x) + c(x), (2) 

and our aim is to develop an extension of the Numerov method that retains the 
main advantages of that method; in particular, the truncation error is of sixth-order 
in the steplength. The method is described in the following section, and discussed 
in relation to a particular example in the final section. It reduces to the Numerov 
method if a(x) is identically zero. 

The differential equation (2) occurs, of course, in many contexts. Our own 
interest arises from the method of polarized orbitals [2], [3] for the scattering 
of slow electrons by atoms, in which the combination of atom polarization and 
electron exchange introduces a term involving the first derivative into the effective 
Schrbdinger equation [3]. An extension of the Numerov method to handle this 
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situation has been described previously in [3] and used successfully there, but the 
method to be described in the following section is expected to have improved error 
propagation properties. 

We remark that the first derivative in Eq. (2) may always be removed by an 
appropriate transformation [4], but the transformation is not always convenient. 

2. THE NUMERICAL METHOD 

We begin with the fundamental equation of the Numerov method [5] 

h2 h6 
241 - 2u, + u-1 = -((US l 12 + 1OU” 0 + u;> 1 -----U(6) O 240 + *.a ’ (3) 

where uj denotes U(X& and h is the steplength, 

h = xj - xjml . 

As in the Numerov method, the problem is to calculate u1 , assuming that u. and 
uF1 are known, and that terms of order h6 in (3) can be neglected. If we suppose 
for the moment that a(x) in (2) is identically zero, then the second derivatives on 
the right-hand side of (3) may be expressed in terms of u1 , u. , and uml by means of 
the differential equation (2), and it is then trivial to solve for u1 in terms of u. 
and U+ . This constitutes the ordinary Numerov method. 

In the general case, with a(x) not identically zero, we can no longer eliminate 
the second derivatives in (3) exactly. Our approach is to develop useful approxima- 
tions for u; and u{ , assuming that uZ1 is known. The aim in a single step is then 
to obtain not only an approximate value for u1 , but also a value for t.4; , which 
will become the known second derivative in the next step. 

The approximations to ~“0 and u; are based on the differential equation (2); 
thus for z.& we have 

24,” = u,u; + b,u, + co . (4) 

To eliminate U; we use the series expansion in powers of h (see Reference [6]j,l 

and obtain a useful approximation by omitting terms of order h4. Similarly, 
for u; we have 

24; = up; + b,u, + Cl ) (6) 

1 Reference [6] contains an error: within both square brackets the term 1 should be replaced 
by +. 
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but we cannot use the symmetrical expansion (5) to eliminate U; , since u2 is not 
known. We use instead [7] 

u; = & (9n, - 16u, + 72.4-r) - ; (8~; + u”,) - & h4uy’ + .**. 

Equations (3), (5), and (7) may all be verified by Taylor series expansions. 
It is convenient to introduce the notation 

S(x) = (P/12) d(x), 

44 = (h/24) 44, 
B(x) = (P/12) b(x), 
C(x) = (/V/12) c(x). 

Then the fundamental equation (3) becomes 

h6 
241 - 2U, + u-1 = s, + lOAs, + s-, - - 2.P) + **. 240 O ’ (8) 

and in it a0 , U-~ , and S, are assumed to be known. Equations (4) and (5) give 
an expression for So , 

So = A,(q - 2S, - x1 + 2S-J + Boa0 + Co + & hauouF) + a.., (9) 

while (6) and (7) give for S, 

S, = A,(924, - 16u, + 72~1 - 64So - 8X,) + &u, + C, 

h6 
- 540 a,uy + *... (10) 

The practical formulas are obtained by omitting terms of order hs in (8), (9), 
and (lo), to give a system of three linear equations in the three unknowns u1 , So , 
and S, . We express the solution below in a form suitable for practical calculation, 
The first step in advancing the solution from x0 to x1 is to calculate the four 
auxiliary quantities 

01 = l/(1 - 20Ao), (11) 
,L3 = ~~(10 - 64/t,), w 

y = Ao(4u, - 3u-, + 4S1) + Bouo + co, (13) 
6 = (1 - 8A,)(2uo - u+ + S,) - A+, + C, . (14) 
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Then u1 is given by 

Pr + 6 
u1 = 1 - 94 - & + PA, ’ (15) 

and S, is given by 
so = “(y - A,u,). (16) 

The quantity S, need not be calculated, but S, is required in preparation for the 
next step. [If S, is required, for example for the midpoint interpolation below, 
it may be calculated directly from (lo).] Equations (1 I)-( 16) constitute the method. 
The initial values required for starting the solution may be provided by Taylor 
series expansion or other methods. 

Midpoint interpolation, required for halving the steplength, may be achieved 
in the same way as in [l] by using again the fundamental equations of the method. 
Specifically, let us assume that us1 , S1 , u1 , and S, are known, and that u0 is 
required. From Eqs. (8) and (9) we obtain 

u, = 
241 + u-1 - s, - S-l - lOA,(u, - U-1 - 2s, + 2s-,) - lOC, 

2 + IOB, 3 

with a truncation error of order h6. 
To conclude this section we point out the difference between the present method 

and that described in [3]. That method is similar in principle, but the first derivatives 
u; and u; are both approximated by the unsymmetrical expansion (7). In other 
words, the method of [3] is obtained if the equation for S, , Eq. (9), is replaced by 
the analog of (10). The disadvantage of that method lies not in the truncation 
error, which is similar in (9) and (lo), but in the dangerously large numerical 
coefficients in (lo), which may lead to excessive error propagation. The present 
method appears more satisfactory, in that while the coefficients in the equation 
for S, are still large, those in the equation for S, are small. It should be noted that 
errors in S, are less important than those in S, , since S, appears in the equation 
for U, , Eq. (8), with the large coefficient 10. 

3. DISCUSSION AND EXAMPLE 

The truncation errors in the method of the previous section arise from the 
omitted terms of order h6 in Eqs. (8)-(lo), thus it is immediately clear that the 
total truncation error in u1 is itself of order h6.2 Since the method is based on the 

a The divisions required in the solution of (8), (9), and (10) do not affect the order of the error, 
since the denominators are of the order of unity. 
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second difference equation (3), it follows that the cumulative error at a fixed value 
of x is of order h4, just as in the Numerov method [8]. It has been pointed out 
elsewhere [g] that, in terms of the order of the cumulative error, the Numerov 
method for the solution of (1) has no clear superiority over other methods, and in 
particular that the fourth-order Runge-Kutta method [9] also has a cumulative 
error of order h4. By extending the argument, the same conclusion may be estab- 
lished for the solution of (2): the extended Numerov method and the fourth-order 
Runge-Kutta method both have cumulative errors of order h4. Any argument as 
to the relative accuracy of the methods must therefore be directed to the magnitude 
of the error, rather than to its order. To make a first assessment we therefore work 
out a particular example. 

Our example is the differential equation 

2.z + 24’ + u = 0, (17) 

subject to the initial conditions u(0) = 0, u’(0) = ~‘3/2. The general solution 
of (17) is 

u(x) = e-z/2(C 1 sin 3x + 2 C 2 cos 9 x) 2 ’ 

and the particular solution satisfying the initial conditions is 

u(x) = fpP sin Q ,y 
2 * 

The results are shown in Table 1, with N denoting the method of Section 2, and RK 

TABLE I 

COMPUTED VALUES OF u/e-z/a 

Errors multiplied by lo* 

X Exact N (h = 0.1) RK (h = 0.1) RK (h = 0.2) 

0 0 0 0 0 
0.8 0.63870981 37 12 226 
1.6 0.98290760 133 -23 -257 
2.4 0.87388220 206 -127 -1946 
3.2 0.36190571 164 -254 -4172 
4.0 -0.31694716 -20 -311 - 5356 
4.8 - 0.84965424 -278 -214 -3995 
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the fourth-order Runge-Kutta method for a second-order differential equation [9]. 
In the former case the results are shown for a steplength of 0.1, and in the latter 
case for the two steplengths 0.1 and 0.2. Exact starting values were used in every 
case. 

From the results with h = 0.1 it is seen that, for this example, the two methods 
yield results of similar accuracy if the same steplength is used. We point out, 
however, that the Runge-Kutta method has the important limitation that values 
of the functions a(x), b(x), and c(x) in (2) are required at the half-way points. 
In the frequently occuring situation that these functions require extensive calcula- 
tion, or if they are available only in tabular form, a fairer comparison in between 
the N (h = 0.1) and RK (h = 0.2) results. On that basis the present method 
seems considerably the more accurate. 

The method described in [3] was also applied to the example. The cumulative 
errors with that method were found to be approximately twice as large as those 
with the method of this paper. 
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